Properties

Label 2.12.32.248
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group 12T250

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 8 x^{10} - 4 x^{9} + 8 x^{8} + 8 x^{6} + 8 x^{4} + 4 x^{2} + 8 x - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 56 x^{10} - 132 x^{9} + 4200 x^{8} - 19568 x^{7} + 133736 x^{6} - 1774096 x^{5} + 2903000 x^{4} - 21859008 x^{3} + 166229428 x^{2} - 332005768 x + 206385162 \)

Invariants of the Galois closure

Galois group:12T250
Inertia group:$D_4\wr C_3$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 8/3, 8/3, 3, 10/3, 10/3, 7/2]
Galois mean slope:$2563/768$
Galois splitting model:$x^{12} - 12 x^{10} + 36 x^{8} + 4740 x^{6} + 17820 x^{4} - 5400 x^{2} - 900$