Properties

Label 2.12.32.210
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group 12T193

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{6} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.3.2.1, 2.6.11.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 76 x^{10} - 292 x^{9} + 992 x^{8} - 1928 x^{7} + 1132 x^{6} - 4296 x^{5} + 3136 x^{4} + 16280 x^{3} + 11400 x^{2} + 8000 x + 1250 \)

Invariants of the Galois closure

Galois group:12T193
Inertia group:12T134
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 3, 19/6, 19/6, 7/2]
Galois mean slope:$619/192$
Galois splitting model:$x^{12} - 2 x^{10} + 9 x^{8} - 8 x^{6} + 15 x^{4} - 22 x^{2} + 11$