Properties

Label 2.12.32.199
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group 12T193

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{10} - 4 x^{9} - 6 x^{8} + 8 x^{7} - 4 x^{6} + 8 x^{5} - 4 x^{4} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.3.2.1, 2.6.11.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 16 x^{11} + 84 x^{10} + 28 x^{9} - 2502 x^{8} + 14024 x^{7} - 38804 x^{6} + 49752 x^{5} + 9884 x^{4} - 105536 x^{3} + 71232 x^{2} + 63632 x - 63074 \)

Invariants of the Galois closure

Galois group:12T193
Inertia group:12T134
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 3, 19/6, 19/6, 7/2]
Galois mean slope:$619/192$
Galois splitting model:$x^{12} - 6 x^{10} + 9 x^{8} + 16 x^{6} - 45 x^{4} + 102 x^{2} - 49$