Properties

Label 2.12.32.167
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $D_4\times S_4$ (as 12T86)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} - 2 x^{8} + 2 x^{4} + 4 x^{2} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.3.2.1, 2.6.11.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 84 x^{10} - 460 x^{9} + 1542 x^{8} - 2448 x^{7} - 1344 x^{6} - 792 x^{5} + 9594 x^{4} - 29880 x^{3} - 5076 x^{2} - 10368 x - 1458 \)

Invariants of the Galois closure

Galois group:$D_4\times S_4$ (as 12T86)
Inertia group:12T51
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 7/2]
Galois mean slope:$37/12$
Galois splitting model:$x^{12} + 2 x^{10} - 12 x^{9} + 9 x^{8} - 16 x^{7} + 44 x^{6} - 56 x^{5} + 61 x^{4} - 80 x^{3} + 74 x^{2} - 36 x + 7$