Properties

Label 2.12.32.126
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $C_4^2:C_3:C_2^2$ (as 12T113)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} - 6 x^{10} + 4 x^{9} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{2} - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 74 x^{10} - 300 x^{9} + 848 x^{8} - 1696 x^{7} + 2404 x^{6} - 2392 x^{5} + 1624 x^{4} - 704 x^{3} + 168 x^{2} - 16 x - 6 \)

Invariants of the Galois closure

Galois group:$C_4^2:C_3:C_2^2$ (as 12T113)
Inertia group:12T60
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 11/3, 11/3]
Galois mean slope:$10/3$
Galois splitting model:$x^{12} - 8 x^{10} + 37 x^{8} - 60 x^{6} + 39 x^{4} - 12 x^{2} + 1$