Properties

Label 2.12.32.114
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group 12T186

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 8 x^{10} + 4 x^{9} - 2 x^{8} + 8 x^{7} + 4 x^{6} + 6 x^{4} + 8 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 136 x^{10} - 1084 x^{9} - 4882 x^{8} + 115768 x^{7} - 1562508 x^{6} + 11368080 x^{5} - 71618202 x^{4} + 389374384 x^{3} - 1210962096 x^{2} + 1776256968 x - 945196274 \)

Invariants of the Galois closure

Galois group:12T186
Inertia group:12T142
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 10/3, 10/3, 7/2]
Galois mean slope:$10/3$
Galois splitting model:$x^{12} - 6 x^{10} - 12 x^{9} + 5 x^{8} + 48 x^{7} + 68 x^{6} + 8 x^{5} - 107 x^{4} - 176 x^{3} - 146 x^{2} - 68 x - 13$