Properties

Label 2.12.32.1
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $C_2\times C_4^2:C_3:C_2$ (as 12T97)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} - 2 x^{10} - 4 x^{9} + 4 x^{8} + 4 x^{6} + 8 x^{5} + 4 x^{4} - 4 x^{2} + 8 x - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 62 x^{10} - 180 x^{9} + 308 x^{8} - 256 x^{7} - 108 x^{6} + 584 x^{5} - 780 x^{4} + 592 x^{3} - 276 x^{2} + 72 x - 6 \)

Invariants of the Galois closure

Galois group:$C_2\times C_4^2:C_3:C_2$ (as 12T97)
Inertia group:12T55
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 11/3, 11/3]
Galois mean slope:$10/3$
Galois splitting model:$x^{12} + 24 x^{10} + 285 x^{8} + 1196 x^{6} + 1635 x^{4} + 24 x^{2} + 1$