Properties

Label 2.12.30.74
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(30\)
Galois group $C_2\times C_4:D_4:C_3$ (as 12T89)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 6 x^{10} + 11 x^{8} + 4 x^{6} + 3 x^{4} + 14 x^{2} + 1 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $30$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1, 2.6.9.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} - 4 x^{3} + 8 x^{2} + 8 x + 2 t^{2} + 4 t - 4 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_4:D_4:C_3$ (as 12T89)
Inertia group:Intransitive group isomorphic to $C_2\times C_4:D_4$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3, 7/2, 7/2]
Galois mean slope:$103/32$
Galois splitting model:$x^{12} + 10 x^{10} + 23 x^{8} + 6 x^{6} + 18 x^{4} - 16 x^{2} + 1$