Properties

Label 2.12.30.441
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(30\)
Galois group 12T223

Related objects

Learn more about

Defining polynomial

\( x^{12} - 4 x^{11} - 4 x^{10} - 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 4 x^{2} + 8 x - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $30$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 4 x^{11} - 836 x^{10} - 4624 x^{9} + 134092 x^{8} + 2804660 x^{7} + 33420932 x^{6} + 162002168 x^{5} + 933549634 x^{4} + 3017677456 x^{3} + 17759530404 x^{2} + 46942130664 x + 74295512170 \)

Invariants of the Galois closure

Galois group:12T223
Inertia group:12T187
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 8/3, 8/3, 3, 3, 19/6, 19/6]
Galois mean slope:$1183/384$
Galois splitting model:$x^{12} + 54 x^{10} - 324 x^{9} + 1287 x^{8} - 5292 x^{7} - 192 x^{6} - 54108 x^{5} + 400383 x^{4} - 756756 x^{3} + 180306 x^{2} + 740664 x - 539217$