Properties

Label 2.12.30.418
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(30\)
Galois group 12T223

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 8 x^{10} + 4 x^{9} - 4 x^{8} - 4 x^{7} + 2 x^{4} - 4 x^{2} + 8 x - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $30$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 4 x^{11} + 808 x^{10} - 12132 x^{9} - 325892 x^{8} + 6119172 x^{7} + 39592768 x^{6} - 997500416 x^{5} - 726487262 x^{4} + 66849360128 x^{3} - 125246107476 x^{2} - 1603255750776 x + 5185643910282 \)

Invariants of the Galois closure

Galois group:12T223
Inertia group:12T187
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 8/3, 8/3, 3, 3, 19/6, 19/6]
Galois mean slope:$1183/384$
Galois splitting model:$x^{12} + 78 x^{10} + 1641 x^{8} - 1584 x^{7} - 88 x^{6} - 41976 x^{5} - 93681 x^{4} + 536448 x^{3} + 453978 x^{2} + 529848 x - 1276893$