Properties

Label 2.12.30.347
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(30\)
Galois group 12T223

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 8 x^{10} - 4 x^{7} + 4 x^{6} + 8 x^{5} - 2 x^{4} - 4 x^{2} + 8 x + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $30$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{11} - 440 x^{10} - 4592 x^{9} - 32624 x^{8} - 1102148 x^{7} - 4397036 x^{6} + 107696312 x^{5} - 162236050 x^{4} - 6096737856 x^{3} + 69022998236 x^{2} - 152538984136 x + 25946042822 \)

Invariants of the Galois closure

Galois group:12T223
Inertia group:12T187
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 8/3, 8/3, 3, 3, 19/6, 19/6]
Galois mean slope:$1183/384$
Galois splitting model:$x^{12} - 12 x^{10} - 4 x^{9} + 48 x^{8} + 36 x^{7} - 64 x^{6} - 80 x^{5} - 8 x^{4} + 40 x^{3} + 56 x^{2} + 32 x + 2$