Properties

Label 2.12.29.245
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(29\)
Galois group 12T193

Related objects

Learn more about

Defining polynomial

\( x^{12} - 2 x^{8} + 2 x^{6} + 2 x^{4} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $29$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.3.2.1, 2.6.8.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 2 x^{8} + 2 x^{6} + 2 x^{4} + 2 \)

Invariants of the Galois closure

Galois group:12T193
Inertia group:12T134
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 10/3, 10/3, 7/2]
Galois mean slope:$10/3$
Galois splitting model:$x^{12} - 16 x^{9} + 24 x^{8} - 12 x^{7} + 130 x^{6} - 384 x^{5} + 480 x^{4} - 320 x^{3} + 120 x^{2} - 24 x + 2$