Defining polynomial
| \( x^{12} - 6 x^{10} + 2 x^{8} + 4 x^{7} - 6 x^{6} + 4 x^{5} - 6 x^{4} + 8 x - 6 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $12$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $28$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-*})$ |
| Root number: | $i$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.3.2.1, 2.6.8.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{12} - 6 x^{10} + 2 x^{8} + 4 x^{7} - 6 x^{6} + 4 x^{5} - 6 x^{4} + 8 x - 6 \) |
Invariants of the Galois closure
| Galois group: | 12T221 |
| Inertia group: | 12T189 |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | [4/3, 4/3, 2, 8/3, 8/3, 11/4, 10/3, 10/3] |
| Galois mean slope: | $1207/384$ |
| Galois splitting model: | $x^{12} + 6 x^{10} + 15 x^{8} + 26 x^{6} + 27 x^{4} + 20 x^{2} + 11$ |