Properties

Label 2.12.28.220
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(28\)
Galois group $C_2^2\times C_2^2:S_4$ (as 12T139)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{11} - 6 x^{10} - 6 x^{8} + 8 x^{7} + 8 x^{6} - 4 x^{5} + 8 x^{3} + 8 x^{2} + 8 x - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $28$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.6, 2.6.11.6, 2.6.11.16

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 8 x^{11} - 6 x^{10} - 6 x^{8} + 8 x^{7} + 8 x^{6} - 4 x^{5} + 8 x^{3} + 8 x^{2} + 8 x - 6 \)

Invariants of the Galois closure

Galois group:$C_2^2\times C_2^2:S_4$ (as 12T139)
Inertia group:12T90
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 8/3, 8/3, 3]
Galois mean slope:$259/96$
Galois splitting model:$x^{12} - 4 x^{11} + 24 x^{10} - 64 x^{9} + 182 x^{8} - 360 x^{7} + 640 x^{6} - 928 x^{5} + 1052 x^{4} - 1024 x^{3} + 752 x^{2} - 320 x + 56$