Properties

Label 2.12.28.164
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(28\)
Galois group $C_2^2\times C_2^2:S_4$ (as 12T139)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{5} - 2 x^{4} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $28$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.8, 2.6.11.6, 2.6.11.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{5} - 2 x^{4} + 2 \)

Invariants of the Galois closure

Galois group:$C_2^2\times C_2^2:S_4$ (as 12T139)
Inertia group:12T90
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 8/3, 8/3, 3]
Galois mean slope:$259/96$
Galois splitting model:$x^{12} - 4 x^{11} + 22 x^{10} - 60 x^{9} + 160 x^{8} - 324 x^{7} + 528 x^{6} - 700 x^{5} + 768 x^{4} - 648 x^{3} + 388 x^{2} - 144 x + 26$