Defining polynomial
| \( x^{12} + 20 x^{10} - 24 x^{8} - 4 x^{6} + 4 x^{4} - 8 x^{2} - 24 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $4$ |
| Residue field degree $f$ : | $3$ |
| Discriminant exponent $c$ : | $27$ |
| Discriminant root field: | $\Q_{2}(\sqrt{2*})$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $6$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-1})$, 2.3.0.1, 2.4.9.4, 2.6.6.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{4} + \left(-2 t^{2} + 2 t\right) x^{2} + 4 t^{2} + 2 t + 4 \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_3\times D_4$ (as 12T14) |
| Inertia group: | Intransitive group isomorphic to $D_4$ |
| Unramified degree: | $3$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 3, 7/2] |
| Galois mean slope: | $11/4$ |
| Galois splitting model: | $x^{12} - 4 x^{11} - 28 x^{10} - 4 x^{9} + 391 x^{8} + 1316 x^{7} + 1864 x^{6} + 656 x^{5} - 902 x^{4} + 508 x^{3} + 4034 x^{2} + 4368 x + 2105$ |