Properties

Label 2.12.27.11
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(27\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 12 x^{10} - 8 x^{8} + 12 x^{6} + 4 x^{4} - 8 x^{2} + 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $27$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $6$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.3.0.1, 2.4.9.1, 2.6.6.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(6 t^{2} - 6 t\right) x^{2} + 4 t^{2} - 6 t + 4 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times D_4$ (as 12T14)
Inertia group:Intransitive group isomorphic to $D_4$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 3, 7/2]
Galois mean slope:$11/4$
Galois splitting model:$x^{12} - 16 x^{10} + 88 x^{8} - 204 x^{6} + 212 x^{4} - 88 x^{2} + 8$