Properties

Label 2.12.26.99
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(26\)
Galois group $S_3 \times C_2^2$ (as 12T10)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 6 x^{10} + 6 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $26$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, $\Q_{2}(\sqrt{2*})$, $\Q_{2}(\sqrt{-2})$, 2.3.2.1, 2.4.8.4, 2.6.8.3, 2.6.11.5, 2.6.11.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{11} + 6 x^{10} + 6 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 6 \)

Invariants of the Galois closure

Galois group:$C_2^2\times S_3$ (as 12T10)
Inertia group:$C_6\times C_2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 3]
Galois mean slope:$13/6$
Galois splitting model:$x^{12} + 4 x^{10} + 7 x^{8} + 4 x^{6} - 21 x^{4} + 8 x^{2} + 1$