Properties

Label 2.12.26.79
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(26\)
Galois group $(C_6\times C_2):C_2$ (as 12T13)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{10} - 2 x^{8} + 4 x^{7} - 2 x^{6} + 4 x^{5} + 4 x^{3} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $26$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.3.2.1, 2.4.8.5, 2.6.8.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{10} + 6 x^{8} + 4 x^{7} + 6 x^{6} + 4 x^{5} + 4 x^{3} + 6 \)

Invariants of the Galois closure

Galois group:$C_3:D_4$ (as 12T13)
Inertia group:$C_6\times C_2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 3]
Galois mean slope:$13/6$
Galois splitting model:$x^{12} - 9 x^{8} + 3 x^{4} - 3$