Properties

Label 2.12.26.52
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(26\)
Galois group $\GL(2,Z/4)$ (as 12T52)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} - 2 x^{6} + 4 x^{3} + 4 x^{2} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $26$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.3.2.1, 2.6.8.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 6 x^{6} + 4 x^{3} + 4 x^{2} + 6 \)

Invariants of the Galois closure

Galois group:$\GL(2,Z/4)$ (as 12T52)
Inertia group:$C_2^2 \times A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 3]
Galois mean slope:$55/24$
Galois splitting model:$x^{12} - x^{8} + 3 x^{4} - 11$