Properties

Label 2.12.26.44
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(26\)
Galois group $A_4\wr C_2$ (as 12T128)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{4} + 4 x^{3} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $26$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 6 \)

Invariants of the Galois closure

Galois group:$A_4\wr C_2$ (as 12T128)
Inertia group:$C_2^4:C_3$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:[8/3, 8/3, 8/3, 8/3]
Galois mean slope:$61/24$
Galois splitting model:$x^{12} - 16 x^{9} + 3 x^{8} + 48 x^{7} - 24 x^{6} - 48 x^{5} + 51 x^{4} + 4 x^{3} - 24 x^{2} + 12 x - 1$