Properties

Label 2.12.26.35
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(26\)
Galois group $A_4:C_4$ (as 12T27)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{8} + 4 x^{5} + 2 x^{4} + 4 x^{3} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $26$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{8} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 6 \)

Invariants of the Galois closure

Galois group:$A_4:C_4$ (as 12T27)
Inertia group:$A_4\times C_2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3]
Galois mean slope:$7/3$
Galois splitting model:$x^{12} - 4 x^{11} - 20 x^{10} + 80 x^{9} + 122 x^{8} - 488 x^{7} - 204 x^{6} + 904 x^{5} - 8 x^{4} - 392 x^{3} - 32 x^{2} + 32 x + 4$