Properties

Label 2.12.24.91
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_2\wr C_6$ (as 12T134)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 18 x^{10} + 90 x^{8} + 16 x^{6} + 240 x^{5} + 84 x^{4} + 1376 x^{3} + 3272 x^{2} - 1824 x - 376\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 3]$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.3.0.1, 2.6.6.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 6 x^{2} + 4 t x + 12 t^{2} + 12 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t$,$z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2\wr C_6$ (as 12T134)
Inertia group:Intransitive group isomorphic to $C_2^3:D_4$
Wild inertia group:$C_2^3:D_4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 3, 3, 3]$
Galois mean slope:$91/32$
Galois splitting model: $x^{12} + 2 x^{10} - 52 x^{8} + 134 x^{6} - 33 x^{4} - 108 x^{2} - 27$ Copy content Toggle raw display