Properties

Label 2.12.24.87
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $A_4\wr C_2$ (as 12T129)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 16 x^{6} + 16 x^{5} - 4 x^{4} + 16 x - 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(4 t^{2} + 4 t\right) x + 2 t^{2} + 2 t + 4 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$A_4\wr C_2$ (as 12T129)
Inertia group:Intransitive group isomorphic to $C_2^4:C_3$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:[8/3, 8/3, 8/3, 8/3]
Galois mean slope:$61/24$
Galois splitting model:$x^{12} - 6 x^{10} + 3 x^{8} - 24 x^{7} - 42 x^{6} - 60 x^{5} - 150 x^{4} - 208 x^{3} - 132 x^{2} - 36 x - 3$