Properties

Label 2.12.24.79
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Gal(K/\Q_{ 2 })|$: $12$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.3.0.1, 2.4.8.2, 2.6.6.3, 2.6.9.1, 2.6.9.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 4 x^{3} + \left(2 t^{2} + 4 t - 2\right) x^{2} + 4 t^{2} x - 2 t^{2} - 2 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_6$ (as 12T2)
Inertia group:Intransitive group isomorphic to $C_2^2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 3]
Galois mean slope:$2$
Galois splitting model:$x^{12} + 13 x^{8} + 26 x^{4} + 1$