Properties

Label 2.12.24.79
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 8 x^{11} + 14 x^{10} + 76 x^{9} + 138 x^{8} + 432 x^{7} + 688 x^{6} + 992 x^{5} + 1748 x^{4} + 1728 x^{3} + 1848 x^{2} + 1648 x + 968\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $12$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[2, 3]$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.3.0.1, 2.4.8.2, 2.6.6.3, 2.6.9.1, 2.6.9.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 t^{2} x^{3} + \left(4 t^{2} + 2\right) x^{2} + 4 x + 12 t^{2} + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2\times C_6$ (as 12T2)
Inertia group:Intransitive group isomorphic to $C_2^2$
Wild inertia group:$C_2^2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:$[2, 3]$
Galois mean slope:$2$
Galois splitting model:$x^{12} + 13 x^{8} + 26 x^{4} + 1$