Defining polynomial
| \( x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $4$ |
| Residue field degree $f$ : | $3$ |
| Discriminant exponent $c$ : | $24$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $|\Gal(K/\Q_{ 2 })|$: | $12$ |
| This field is Galois and abelian over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.3.0.1, 2.4.8.2, 2.6.6.3, 2.6.9.1, 2.6.9.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{4} + 4 x^{3} + \left(2 t^{2} + 4 t - 2\right) x^{2} + 4 t^{2} x - 2 t^{2} - 2 t + 2 \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_2\times C_6$ (as 12T2) |
| Inertia group: | Intransitive group isomorphic to $C_2^2$ |
| Unramified degree: | $3$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 3] |
| Galois mean slope: | $2$ |
| Galois splitting model: | $x^{12} + 13 x^{8} + 26 x^{4} + 1$ |