Properties

Label 2.12.24.66
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_2\times C_4^2:C_3$ (as 12T55)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 16 x^{11} - 6 x^{10} - 8 x^{9} + 12 x^{8} + 8 x^{7} - 8 x^{6} + 8 x^{5} - 4 x^{4} + 16 x^{3} + 16 x + 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1, 2.6.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(-4 t^{2} + 8 t + 4\right) x^{3} + \left(-6 t^{2} - 2 t\right) x^{2} + \left(4 t^{2} + 4 t + 8\right) x - 6 t^{2} + 8 t \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_4^2:C_3$ (as 12T55)
Inertia group:Intransitive group isomorphic to $C_2\times C_4^2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 3, 3, 3]
Galois mean slope:$45/16$
Galois splitting model:$x^{12} - 2 x^{10} - 97 x^{8} + 360 x^{6} - 345 x^{4} + 50 x^{2} + 25$