Properties

Label 2.12.24.50
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group 12T205

Related objects

Learn more about

Defining polynomial

\( x^{12} + 36 x^{11} - 48 x^{10} - 12 x^{9} - 58 x^{8} - 32 x^{6} + 48 x^{5} + 60 x^{4} - 16 x^{3} + 64 x^{2} - 48 x + 40 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 4 t^{2} x^{3} + \left(4 t^{2} + 4 t\right) x^{2} + \left(4 t + 4\right) x - 2 t^{2} + 2 t + 4 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:12T205
Inertia group:Intransitive group isomorphic to $C_2^6:C_3$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 4/3, 4/3, 8/3, 8/3]
Galois mean slope:$223/96$
Galois splitting model:$x^{12} + 1176 x^{10} - 9352 x^{9} + 13158 x^{8} + 2285928 x^{7} - 15228264 x^{6} + 14779224 x^{5} + 1569752496 x^{4} - 1444920928 x^{3} + 3813990768 x^{2} - 18616281792 x + 23067540424$