Properties

Label 2.12.24.406
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(24\)
Galois group $\GL(2,Z/4)$ (as 12T52)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{7} + 2 x^{6} + 4 x^{4} + 4 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.3.2.1, 2.6.8.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{7} + 2 x^{6} + 4 x^{4} + 4 x - 2 \)

Invariants of the Galois closure

Galois group:$\GL(2,Z/4)$ (as 12T52)
Inertia group:$C_2^2 \times A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 2, 8/3, 8/3]
Galois mean slope:$29/12$
Galois splitting model:$x^{12} - 8 x^{9} - 18 x^{8} - 24 x^{7} - 30 x^{6} - 36 x^{5} - 54 x^{4} - 56 x^{3} - 36 x^{2} - 12 x - 2$