Properties

Label 2.12.24.372
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(24\)
Galois group 12T254

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 4 x + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 4 x + 2 \)

Invariants of the Galois closure

Galois group:12T254
Inertia group:12T166
Unramified degree:$6$
Tame degree:$9$
Wild slopes:[22/9, 22/9, 22/9, 22/9, 22/9, 22/9]
Galois mean slope:$697/288$
Galois splitting model:$x^{12} - 8 x^{11} + 16 x^{10} + 64 x^{9} - 950 x^{8} + 6072 x^{7} - 16800 x^{6} + 1296 x^{5} + 83788 x^{4} - 82896 x^{3} - 293280 x^{2} + 700128 x - 442152$