Defining polynomial
| \( x^{12} + 4 x + 2 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $12$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $24$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $1$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.3.2.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{12} + 4 x + 2 \) |
Invariants of the Galois closure
| Galois group: | 12T254 |
| Inertia group: | 12T166 |
| Unramified degree: | $6$ |
| Tame degree: | $9$ |
| Wild slopes: | [22/9, 22/9, 22/9, 22/9, 22/9, 22/9] |
| Galois mean slope: | $697/288$ |
| Galois splitting model: | $x^{12} - 18 x^{10} - 60 x^{9} - 819 x^{8} - 2628 x^{7} - 888 x^{6} - 72 x^{5} + 46989 x^{4} + 266584 x^{3} + 492066 x^{2} + 1002564 x + 2355687$ |