Properties

Label 2.12.24.330
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(24\)
Galois group 12T254

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x + 2 \)

Invariants of the Galois closure

Galois group:12T254
Inertia group:12T166
Unramified degree:$6$
Tame degree:$9$
Wild slopes:[22/9, 22/9, 22/9, 22/9, 22/9, 22/9]
Galois mean slope:$697/288$
Galois splitting model:$x^{12} - 4 x^{11} - 24 x^{10} + 260 x^{9} + 1474 x^{8} + 1212 x^{7} - 5684 x^{6} - 11824 x^{5} + 228 x^{4} + 15648 x^{3} + 6264 x^{2} - 9720 x - 8100$