Properties

Label 2.12.24.315
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 32 x^{11} - 10 x^{10} + 8 x^{9} - 18 x^{8} + 32 x^{7} + 20 x^{6} + 24 x^{5} - 24 x^{4} + 32 x^{3} + 16 x^{2} - 24 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Gal(K/\Q_{ 2 })|$: $12$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2*})$, $\Q_{2}(\sqrt{-2*})$, 2.3.0.1, 2.4.8.1, 2.6.6.3, 2.6.9.3, 2.6.9.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(-4 t^{2} + 8 t + 8\right) x^{3} + \left(-2 t^{2} - 2\right) x^{2} + \left(-4 t^{2} + 8 t\right) x + 6 t^{2} + 6 t - 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_6$ (as 12T2)
Inertia group:Intransitive group isomorphic to $C_2^2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 3]
Galois mean slope:$2$
Galois splitting model:$x^{12} + 18 x^{8} + 45 x^{4} + 9$