Properties

Label 2.12.24.206
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_2^2 \times A_4$ (as 12T25)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 8 x^{11} + 14 x^{10} - 8 x^{9} + 2 x^{8} - 8 x^{7} + 12 x^{6} - 8 x^{5} - 8 x^{4} + 16 x^{3} + 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.3.0.1, 2.6.6.3, 2.6.9.2, 2.6.9.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 4 t^{2} x^{3} + \left(-2 t^{2} + 4 t - 2\right) x^{2} + 4 t^{2} x + 2 t^{2} - 2 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^2\times A_4$ (as 12T25)
Inertia group:Intransitive group isomorphic to $C_2^4$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3]
Galois mean slope:$19/8$
Galois splitting model:$x^{12} + 5 x^{8} + 6 x^{4} + 1$