Properties

Label 2.12.24.110
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_2^2 \times A_4$ (as 12T26)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 12 x^{11} + 6 x^{10} - 28 x^{9} - 28 x^{8} - 24 x^{7} + 12 x^{6} + 16 x^{5} + 4 x^{4} + 32 x^{3} + 16 x^{2} - 24 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1, 2.6.6.6, 2.6.9.4, 2.6.9.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(8 t^{2} + 8 t - 4\right) x^{3} + \left(-6 t^{2} + 8 t + 6\right) x^{2} + \left(4 t^{2} + 4 t - 4\right) x - 6 t^{2} + 2 t \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^2\times A_4$ (as 12T26)
Inertia group:Intransitive group isomorphic to $C_2^4$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3]
Galois mean slope:$19/8$
Galois splitting model:$x^{12} - 18 x^{10} + 123 x^{8} - 428 x^{6} + 819 x^{4} - 834 x^{2} + 361$