Properties

Label 2.12.22.29
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(22\)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 2 x^{6} + 4 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $6$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-2*})$, 2.4.6.2, 2.6.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + 2 t - 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6\times S_3$ (as 12T18)
Inertia group:Intransitive group isomorphic to $C_6$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:[3]
Galois mean slope:$11/6$
Galois splitting model:$x^{12} - 2 x^{6} + 4$