Properties

Label 2.12.22.136
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(22\)
Galois group $C_4^2:C_3:C_2^2$ (as 12T112)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{8} - 2 x^{6} + 4 x^{3} + 4 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.8.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{8} - 2 x^{6} + 4 x^{3} + 4 x - 2 \)

Invariants of the Galois closure

Galois group:$C_4^2:C_3:C_2^2$ (as 12T112)
Inertia group:12T60
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 7/3, 7/3]
Galois mean slope:$103/48$
Galois splitting model:$x^{12} - 6 x^{11} + 28 x^{10} - 80 x^{9} + 186 x^{8} - 312 x^{7} + 422 x^{6} - 416 x^{5} + 302 x^{4} - 164 x^{3} + 64 x^{2} - 16 x + 2$