Properties

Label 2.12.22.117
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(22\)
Galois group $C_2\times C_2^2:S_4$ (as 12T103)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{11} - 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} + 4 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.6.8, 2.6.10.5, 2.6.10.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{11} - 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} + 4 x - 2 \)

Invariants of the Galois closure

Galois group:$C_2\times C_2^2:S_4$ (as 12T103)
Inertia group:12T56
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 8/3, 8/3]
Galois mean slope:$115/48$
Galois splitting model:$x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 83 x^{8} + 148 x^{7} + 212 x^{6} + 148 x^{5} + 59 x^{4} + 34 x^{3} + 12 x^{2} + 2 x + 1$