Properties

Label 2.12.20.69
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(20\)
Galois group 12T206

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{6} + 2 x^{4} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{6} + 2 x^{4} + 2 \)

Invariants of the Galois closure

Galois group:12T206
Inertia group:12T90
Unramified degree:$6$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 4/3, 4/3, 2, 2]
Galois mean slope:$175/96$
Galois splitting model:$x^{12} - 2 x^{11} - 90 x^{10} - 728 x^{9} + 622 x^{8} + 25584 x^{7} + 116920 x^{6} - 34400 x^{5} - 1591500 x^{4} - 3477064 x^{3} + 4316984 x^{2} + 19884384 x + 7945512$