Properties

Label 2.12.20.66
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(20\)
Galois group $\GL(2,Z/4)$ (as 12T52)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.3.2.1, 2.6.8.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 \)

Invariants of the Galois closure

Galois group:$\GL(2,Z/4)$ (as 12T52)
Inertia group:$C_2^2 \times A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 2]
Galois mean slope:$43/24$
Galois splitting model:$x^{12} - 6 x^{11} + 18 x^{10} - 22 x^{9} + 4 x^{8} + 24 x^{7} - 28 x^{6} + 16 x^{5} - 8 x^{3} + 8 x^{2} - 4 x + 2$