Defining polynomial
| \( x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} - 2 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $12$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $20$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-*})$, 2.3.2.1, 2.4.6.9, 2.6.8.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 6 \) |
Invariants of the Galois closure
| Galois group: | $C_3:D_4$ (as 12T13) |
| Inertia group: | $C_6\times C_2$ |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | [2, 2] |
| Galois mean slope: | $5/3$ |
| Galois splitting model: | $x^{12} - 6 x^{10} - 6 x^{9} + 9 x^{8} + 24 x^{7} - 60 x^{5} - 105 x^{4} - 96 x^{3} - 54 x^{2} - 18 x - 3$ |