Properties

Label 2.12.20.37
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(20\)
Galois group $S_4$ (as 12T9)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 6 x^{10} - x^{8} + 4 x^{6} + 3 x^{4} + 2 x^{2} - 7 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.2.1 x3, 2.6.4.1, 2.6.10.2, 2.6.10.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + 2 x^{5} + \left(4 t - 2\right) x^{2} + 4 x + 4 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$S_4$ (as 12T9)
Inertia group:Intransitive group isomorphic to $A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[8/3, 8/3]
Galois mean slope:$13/6$
Galois splitting model:$x^{12} + 3 x^{10} - 5 x^{6} + 3 x^{2} + 1$