Properties

Label 2.12.20.29
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(20\)
Galois group $\GL(2,Z/4)$ (as 12T50)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 7 x^{8} + 15 x^{4} + 3 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.2.1 x3, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + 2 x^{5} + \left(2 t + 2\right) x^{4} + 4 t x^{2} + 4 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$\GL(2,Z/4)$ (as 12T50)
Inertia group:Intransitive group isomorphic to $C_2^2\times A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 2, 8/3, 8/3]
Galois mean slope:$29/12$
Galois splitting model:$x^{12} - 9 x^{10} + 30 x^{8} - 45 x^{6} + 30 x^{4} - 9 x^{2} + 3$