Properties

Label 2.12.18.80
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(18\)
Galois group $C_2 \times S_4$ (as 12T22)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{11} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.6.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{11} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2 \)

Invariants of the Galois closure

Galois group:$C_2\times S_4$ (as 12T22)
Inertia group:$A_4\times C_2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2]
Galois mean slope:$19/12$
Galois splitting model:$x^{12} - 4 x^{10} - 2 x^{9} + 17 x^{8} + 6 x^{7} - 30 x^{6} - 6 x^{5} + 31 x^{4} - 26 x^{3} - 4 x^{2} + 28 x - 13$