Properties

Label 2.12.18.8
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(18\)
Galois group $C_2^2 \times A_4$ (as 12T25)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 4 x^{10} - 260 x^{8} - 3296 x^{6} + 2544 x^{4} + 5056 x^{2} + 6208 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.6.0.1, 2.6.9.6, 2.6.9.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + 4 t^{3} + 4 t^{2} + 4 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^2\times A_4$ (as 12T25)
Inertia group:Intransitive group isomorphic to $C_2^3$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[2, 2, 3]
Galois mean slope:$9/4$
Galois splitting model:$x^{12} - 6 x^{10} + 48 x^{8} - 152 x^{6} + 240 x^{4} - 192 x^{2} + 64$