Properties

Label 2.12.18.71
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(18\)
Galois group 12T254

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{7} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{7} + 2 \)

Invariants of the Galois closure

Galois group:12T254
Inertia group:12T166
Unramified degree:$6$
Tame degree:$9$
Wild slopes:[16/9, 16/9, 16/9, 16/9, 16/9, 16/9]
Galois mean slope:$127/72$
Galois splitting model:$x^{12} - 4 x^{11} - 26 x^{10} + 68 x^{9} + 494 x^{8} - 4580 x^{7} + 17380 x^{6} - 40308 x^{5} + 66036 x^{4} - 77080 x^{3} + 91480 x^{2} - 88936 x + 93500$