Defining polynomial
| \( x^{12} + 132 x^{10} - 4468 x^{8} - 4640 x^{6} - 4752 x^{4} + 2112 x^{2} - 7872 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $6$ |
| Discriminant exponent $c$ : | $18$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $4$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.6.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{2} + 8 t^{5} + 8 t^{4} - 4 t^{3} + 4 t^{2} + 4 t - 6 \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_4\times A_4$ (as 12T29) |
| Inertia group: | Intransitive group isomorphic to $C_2^3$ |
| Unramified degree: | $6$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 2, 3] |
| Galois mean slope: | $9/4$ |
| Galois splitting model: | $x^{12} + 26 x^{10} + 208 x^{8} + 416 x^{6} - 1456 x^{4} - 4576 x^{2} + 832$ |