Properties

Label 2.12.18.53
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(18\)
Galois group 12T166

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 6 x^{10} - 4 x^{9} - 2 x^{8} + 4 x^{7} + 8 x^{5} + 8 x^{4} + 8 x^{2} + 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 2 t^{2} x^{3} + \left(2 t^{2} + 2 t + 2\right) x^{2} + 2 t^{2} + 2 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:12T166
Inertia group:Intransitive group isomorphic to $C_2^6$
Unramified degree:$9$
Tame degree:$1$
Wild slopes:[2, 2, 2, 2, 2, 2]
Galois mean slope:$63/32$
Galois splitting model:$x^{12} - 4 x^{11} + 2 x^{10} + 28 x^{9} - 21 x^{8} - 26 x^{7} + 112 x^{6} + 6 x^{5} - 144 x^{4} + 68 x^{3} + 134 x^{2} - 18 x - 31$