Properties

Label 2.12.18.51
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(18\)
Galois group $A_4 \times C_2$ (as 12T7)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{11} + 16 x^{10} + 44 x^{9} + 18 x^{8} - 8 x^{7} + 24 x^{6} + 40 x^{5} + 20 x^{4} + 8 x^{3} + 8\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 2]$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.3.0.1, 2.6.6.1, 2.6.6.3, 2.6.6.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(2 t^{2} + 2 t + 2\right) x^{3} + 2 t x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + tz + t^{2} + t + 1$
Associated inertia:$1$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2\times A_4$ (as 12T7)
Inertia group:Intransitive group isomorphic to $C_2^3$
Wild inertia group:$C_2^3$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:$[2, 2, 2]$
Galois mean slope:$7/4$
Galois splitting model:$x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 3 x^{8} - 4 x^{6} + 3 x^{4} + 2 x^{3} + 2 x^{2} - 2 x + 1$