Properties

Label 2.12.18.5
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(18\)
Galois group $D_4\times A_4$ (as 12T51)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 16 x^{10} + 388 x^{8} + 3584 x^{6} + 1200 x^{4} - 256 x^{2} - 2880 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + 4 t^{5} + 4 t^{4} + 4 t^{2} + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$D_4\times A_4$ (as 12T51)
Inertia group:Intransitive group isomorphic to $C_2^4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3]
Galois mean slope:$19/8$
Galois splitting model:$x^{12} - 12 x^{10} + 60 x^{8} - 168 x^{6} + 288 x^{4} - 288 x^{2} + 192$