Defining polynomial
| \( x^{12} + 14 x^{11} + 8 x^{10} - 12 x^{9} - 14 x^{8} + 8 x^{7} + 16 x^{6} + 16 x^{3} - 8 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $4$ |
| Residue field degree $f$ : | $3$ |
| Discriminant exponent $c$ : | $18$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.3.0.1, 2.6.6.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{4} + \left(-2 t + 4\right) x^{3} + 4 x^{2} + \left(4 t + 4\right) x + 2 t - 2 \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_2^5.C_6$ (as 12T99) |
| Inertia group: | Intransitive group isomorphic to $C_2^4$ |
| Unramified degree: | $12$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 2, 2, 2] |
| Galois mean slope: | $15/8$ |
| Galois splitting model: | $x^{12} - 4 x^{11} + 16 x^{10} - 64 x^{9} + 243 x^{8} - 686 x^{7} + 1418 x^{6} - 2162 x^{5} + 2434 x^{4} - 1988 x^{3} + 1062 x^{2} - 270 x + 27$ |